FISH-диагностика плода и ее применение в планировании беременности и для выявления хромосомной патологии

Содержание
  1. Клиника ЭКО | FISH и NGS
  2. Показания к проведению генетической диагностики эмбрионов
  3. Скрининг методом FISH:
  4. Полногеномный скрининг методом NGS (Next Generation Sequencing):
  5. NGS при робертсоновской транслокации:
  6. FISH при аномалии половых хромосом:
  7. NGS при реципрокной транслокации:
  8. FISH и NGS при моногенном заболевании: 
  9. FISH-диагностика плода и ее применение в планировании беременности и для выявления хромосомной патологии
  10. Что такое «FISH-метод»?
  11. Как применяют FISH-диагностику плода?
  12. Достоинства анализа FISH-методом
  13. Где можно сделать диагностику FISH-методом
  14. FISH-диагностика хромосомной патологии плода
  15. Причины, вызывающие замершую беременность.
  16. Причины, вызывающие врожденные пороки развития (ВПР)  у плода
  17. Виды исследований хромосом
  18. Исследование гоносом FISH-методом у преимплантационных эмбрионов
  19. Суть исследования
  20. Цель исследования
  21. Материалы и методы
  22. Результаты
  23. Выводы
  24. Цены на медицинские услуги
  25. Акции в Нова Клиник
  26. Исследование хромосом методом FISH. Лечение бесплодия от ИРМ
  27. Могут ли эмбрионы остановиться в развитии в результате биопсии?
  28. Кому рекомендовано проведение ПГД методом FISH?
  29. Какова точность ПГД?
  30. Можно ли просчитать пол будущего ребенка заранее?

Клиника ЭКО | FISH и NGS

FISH-диагностика плода и ее применение в планировании беременности и для выявления хромосомной патологии

Преимплантационная генетическая диагностика (тестирование) эмбрионов — определение генетической патологии эмбрионов на стадии доимплантационного развития.

На сегодняшний день репродуктивная медицина и эмбриология предоставляют несколько технологий генетической диагностики эмбрионов до переноса в полость матки. В Клинике МАМА представлен спектр программ преимплантационной генетической диагностики.

Какая именно технология оптимальна для Вашей семьи — зависит от целого ряда факторов, которые учитывают наши специалисты: репродуктолог, андролог, генетик и, конечно же, эмбриологи.

{vivod-form-priem}

Наши пациенты всегда получают полную информацию о технологиях, применяемых в Клинике, каждом этапе проводимого протокола экстракорпорального оплодотворения. Если Вы только планируете лечение у нас — знакомим Вас с возможностями преимплантационной генетической диагностики в Клинике МАМА:

  • преимплантационный генетический скрининг (ПГС) — определение спонтанной генетической патологии у эмбрионов;
  • преимплантационная генетическая диагностика (ПГД) — определение конкретного наследственного синдрома или заболевания, которое эмбрион может унаследовать от родителя с известной генетической патологией.

ВАЖНО: часто термин «ПГД» используют, обобщая различные методики: преимплантационный генетический скрининг (ПГС) и непосредственно ПГД эмбрионов.

Показания к проведению генетической диагностики эмбрионов

Преимплантационный генетический скрининг эмбрионов в программе экстракорпорального оплодотворения может быть рекомендован как оптимальная технология оценки генетического статуса эмбрионов в следующих случаях:

  • возраст женщины старше 36 лет (по данным ВОЗ риск рождения ребенка с анеуплоидией — аномальным набором хромосом, например, трисомией по 21 хромосоме, что приводит к рождению ребенка с синдромом Дауна, составляет 1/385 в возрасте 30 лет, 1/63 в возрасте 40 лет и 1/19 в возрасте 45 лет);
  • неудачные протоколы ЭКО в анамнезе;
  • привычное невынашивание беременности;
  • рождение ребенка (или беременность) с хромосомной патологией при нормальных кариотипах у родителей;
  • наличие негативных факторов внешней среды в условиях работы или проживания;
  • прием некоторых лекарственных препаратов в анамнезе;
  • вредные привычки.

Преимплантационная генетическая диагностика эмбрионов, направленная на выявление передачи генетической патологии по наследству, может быть рекомендована, если у одного/обоих будущих родителей, а также кровных родственников семьи по обеим линиям:

  • Робертсоновская транслокация;
  • аномалия половых хромосом;
  • реципрокная транслокация;
  • моногенное заболевание.

ВАЖНО: в каждом случае генетической патологии у родителей необходим индивидуальный подход при выборе алгоритма ПГД.

Скрининг методом FISH:

скрининг наиболее часто встречающихся численных хромосомных аномалий методом FISH (Fluorescence In Situ Hybridization) — флуоресцентная in situ гибридизация — «золотой стандарт» генетической диагностики во всем мире на сегодняшний день.

Суть метода заключается в том, что в ядро эмбриональной клетки внедряют специально подобранные для каждой хромосомы ДНК-зонды, окрашенные различными флуоресцентными (светящимися) красителями. Происходит гибридизация ДНК-зонда со «своей» хромосомой.

Результат этой гибридизации обнаруживают с помощью люминесцентного микроскопа, а при использовании регистрирующей оптики и специального программного обеспечения получают изображение ядра с флуоресцентными сигналами — «фотографию» исследуемых хромосом.

Анализ полученного изображения позволяет выявить возможные хромосомные нарушения.

В скрининговую панель включено определение 5 хромосом: половые (X, Y), 13, 18 и 21. Исследование именно этих хромосом позволяет исключить наиболее частые генетические синдромы новорожденных — Дауна, Патау и Эдвардса, а также анеуплоидии половых хромосом, которые занимают первое место по частоте встречаемости.

Кроме того, метод позволяет выявить моносомии и нарушение плоидности у эмбриона — моно- , три- и полиплоидию — основные генетические причины спонтанного прерывания беременности. Диагностика методом FISH по 5 хромосомам позволяет исключить до 95% хромосомных патологий, встречающихся у новорожденных или при прервавшейся беременности.

Для данной FISH диагностики мы проводим биопсию эмбриональных клеток (4 сутки развития эмбриона). Сама процедура выполняется в интервале от 12 до 48 часов после биопсии и к моменту переноса эмбрионов, на 5-6 сутки развития уже известен результат генетического скрининга.

Полногеномный скрининг методом NGS (Next Generation Sequencing):

новейшая молекулярно-генетическая технология, пришедшая на смену технологиям с использованием ДНК-микрочипов. В основе метода NGS полное геномное секвенирование нового поколения, буквенное прочтение ДНК-кода.

Метод является высокочувствительным и позволяет определить численные, а в ряде случаев и структурные аномалии всех 24 хромосом.

Для диагностики методом NGS мы также проводим биопсию эмбриональных клеток, которые служат материалом для анализа. После биопсии эмбрионы необходимо криоконсервировать до следующего цикла, когда будет известен результат генетического скрининга.

NGS при робертсоновской транслокации:

транслокация происходит только между двумя любыми хромосомами из группы D (акроцентрические хромосомы) — 13, 14, 15, 21 и 22.

Эмбрионы от родителя с робертсоновской транслокацией могут иметь нормальный набор хромосом (здоровы), могут нести сбалансированную робертсоновскую транслокацию (здоровы, но являются носителями), могут нести несбалансированную реципрокную транслокацию (больны или нежизнеспособны).

Ярким примером несбалансированной транслокации является так называемый семейный синдром Дауна, когда в семье из поколения в поколение могут быть частыми случаи рождения ребенка с трисомией 21 хромосомы. Такое бывает, когда у членов семьи присутствует сбалансированная робертсоновская транслокация с участием хромосомы 21.

Еще одна серьезная патология — синдром Патау, трисомия хромосомы 13, может быть следствием носительства родителем транслокации с участием хромосомы 13.

Эмбрионы с моносомией нежизнеспособны, поэтому в паре, где один из родителей является носителем робертсоновской транслокации, часто наблюдаются трудности в достижении беременности или привычное невынашивание.

Целью генетической диагностики при робертсоновской транслокации является выявление эмбрионов с несбалансированной транслокацией, которая является причиной моносомии или трисомии. Наличие транслокации является пусковым механизмом для формирования анеуплоидий по любой другой хромосоме, в связи с этим при наличии транслокации оптимальным является метод NGS.

FISH при аномалии половых хромосом:

в большинстве случаев аномалии половых хромосом эта генетическая патология является причиной абсолютного бесплодия и таким пациентам рекомендовано ЭКО с использованием донорских половых клеток.

Бывают случаи, когда собственные половые клетки созревают, но генетическая аномалия в том или ином виде может быть передана ребенку. Это касается синдрома Клайнфельтера (одна и более дополнительных X хромосом у мужчины), а также дополнительные Х хромосомы у женщины.

Целью преимплантационной генетической диагностики при численной аномалии половых хромосом является выявление эмбрионов с анеуплоидией половых хромосом. Для этой цели оптимальным и достаточным является метод FISH.

NGS при реципрокной транслокации:

транслокация происходит между любыми хромосомами спонтанно, размер и положение транслоцированных фрагментов также являются случайными.

Носитель сбалансированной реципрокной транслокации является здоровым человеком, поскольку общее количество генетического материала не нарушено, изменено лишь его положение на хромосомах.

Но при созревании половых клеток у пациента генетический материал наследуется таким образом, что сперматозоиды или яйцеклетки, в большинстве случаев, несут несбалансированный набор — избыток или недостаток жизненно важных генов. Если в оплодотворении участвует такой сперматозоид или яйцеклетка, то эмбрион будет нежизнеспособный или может родиться тяжело больной ребенок.

Целью ПГД при реципрокной транслокации является определение эмбрионов с несбалансированным, аномальным генетическим набором.

Поскольку транслокация может затрагивать небольшие участки хромосом, для проведения точной диагностики необходим высокочувствительный молекулярно-генетический метод. На сегодняшний день таким является метод NGS.

Для каждого случая реципрокной транслокации специалисты подбирают оптимальные параметры секвенирования, с учетом величины транслоцированных участков и характера транслокации.

Для диагностики методом NGS мы также проводим биопсию эмбриональных клеток, которые служат материалом для анализа. После биопсии эмбрионы необходимо криоконсервировать до следующего цикла, когда будет известен результат генетической диагностики.

FISH и NGS при моногенном заболевании: 

моногенное заболевание вызвано нарушением (мутацией) в определенном гене. На сегодняшний день описано около 4000 моногенных заболеваний, большинство из которых встречаются редко — 1/6000.

Принципы наследования моногенных заболеваний подчиняются классическим законам генетики, сами заболевания классифицируются по типу наследования:

  1. Аутосомно-доминантный тип — носитель мутантного гена всегда болен, поэтому о риске рождения больного ребенка в семье известно заранее. Вероятность рождения ребенка с патологией составляет 50%.

    В этом случае необходимо обследование носителя заболевания с целью точного определения мутации.

    После получения исчерпывающей информации о характере и положении мутации, молекулярные генетики создают индивидуальную тест-систему для диагностики заболевания у эмбрионов, или же предлагают уже известную тест-систему, если таковая описана и имеется в особых базах данных (генетических библиотеках).

    Диагностику проводят методом NGS.

  2. Аутосомно-рецессивный тип — носитель мутантного гена здоров, но может передать его ребенку. Если оба родителя являются носителями одного заболевания, то ребенок, получивший две копии мутантного гена — по одной от каждого из родителей, будет болен.

    Как правило о носительстве моногенного заболевания с таким типом наследования супруги узнают уже после рождения в семье ребенка с патологией. Риск рождения больного ребенка составляет 25%.

    В данном случае необходимо доскональное обследование семьи — родителей, рожденного ребенка (если есть), дедушек и бабушек, братьев и сестер — чем больше членов семьи будет обследовано, тем достовернее будет результат.

    Обследование включает в себя генетическую диагностику возможных носителей заболевания, составление генеалогической истории заболевания.

    После получения исчерпывающей информации о характере и положении мутаций со стороны обоих родителей молекулярные генетики создают индивидуальную для данной семьи тест-систему, которую используют для проведения ПГД. Диагностику проводят методом NGS.

  3. Моногенное заболевание, сцепленное с полом — мутантный ген расположен на половой хромосоме, заболевание проявляется у людей определенного пола.

    Поскольку заболевание передается только людям определенного пола, необходимым и достаточным в данном случае является выбор эмбрионов нужного пола, которому не передается заболевание. Определить пол эмбриона можно методом FISH.

Если Вам рекомендовано генетическое обследование, Вы планируете посетить врача-генетика, Вам необходимо проведение преимплантационной генетической диагностики в программе ЭКО — в Клинике МАМА Вам окажут экспертную медицинскую помощь. Задать интересующие Вас вопросы и записаться на прием можно по телефону +7 495 921 43 26, оставив заявку на обратный звонок, а также воспользовавшись нашим онлайн-сервисом «Бесплатная консультация».

Источник: https://www.ma-ma.ru/services/geneticheskaya_diagnostika/fish-i-ngs/

FISH-диагностика плода и ее применение в планировании беременности и для выявления хромосомной патологии

FISH-диагностика плода и ее применение в планировании беременности и для выявления хромосомной патологии

Инвазивные методы пренатальной диагностики позволяют не только заглянуть в будущее и достоверно предсказать ожидают ли еще неродившегося малыша заболевания, связанные с внутриутробными пороками развития, но и выяснить характер и причины врожденных патологий.

Однако любая информация имеет ценность лишь тогда, когда является своевременной. Если речь идет о состоянии развития плода, скорость получения результатов анализов приобретает жизненно-важное значение.

Поэтому, FISH-метод, позволяющий оценить наличие у эмбриона наиболее часто встречающихся аномалий развития в максимально короткие сроки, весьма востребован в генетической диагностике.

Что такое «FISH-метод»?

FISH– аббревиатура, в расшифровке которой кроется суть технологии выявления хромосомных аномалий – fluorescence in situ hybridization – флюоресцентной гибридизации в «домашней» среде.

Этот прием, предложенный в конце 70-х годов прошлого века Дж. Голлом и М.-Л. Пардью, основан на возможности восстановления последовательности расположения фрагментов нуклеиновых кислот (ДНК или РНК) после их денатурации.

Авторы разработали метод, позволяющий с помощью гибридизации in situ искусственно созданных меченых ДНК-проб (зондов) и цитогенетического материала, взятого на анализ, выявить количественные и качественные отклонения интересующих хромосом.

В конце прошлого века, после успешного применения для окрашивания ДНК-зондов флуоресцентных красителей, FISH-метод получил свое название и с тех пор интенсивно совершенствуется и вариатизируется.

Современные методики FISH-анализа стремятся к тому, чтобы обеспечить возможность получения максимально полной информации для анализа забранного генетического материала за одну процедуру гибридизации.

Дело в том, что единожды после гибридизации можно оценить лишь ограниченное количество хромосом одного и того же цитогенетического материала. Способность же к повторной гибридизации ДНК-цепочек снижается от раза к разу.

Поэтому, на данный момент в генетической диагностике наиболее часто метод гибридизации in situ применяется для быстрого ответа на вопросы об имеющихся, наиболее распространенных анеуплоидий по 21, 13, 18 хромосомах, а также по половым хромосомам X, Y.

Для проведения анализа FISH-методом подходят любые тканевые или клеточные образцы. 

В пренатальной диагностике, это могут быть образцы крови, эякулята, фрагменты хориона, амниотическая жидкость или пуповинная кровь плода.

Быстрота получения результатов обеспечивается тем, что клетки, полученные из забранного на анализ материала, не нужно культивировать в питательных средах, добиваясь их деления до нужного количества, как при классическом способе кариотипирования.

Отобранный материал проходит специальную подготовку для получения концентрированной чистой клеточной суспензии. Далее проводят процесс денатурации ДНК-пробы и нативных ДНК исследуемого образца до одноцепочечного состояния и процесс гибридизации, во время которого окрашенные ДНК-зонды инкубируются с ДНК образца.

Таким образом, визуализируются искомые (окрашенные) хромосомы в клетке, оценивается их количество, строение генетических структур и т.п. Рассмотреть светящиеся цепочки ДНК позволяет окуляр особого флуоресцентного микроскопа.

В настоящее время FISH-метод широко используется в диагностических целях для выявления генетических заболеваний, хромосомных аберраций в репродуктивной медицине, онкологии, гематологии, в биологической дозиметрии и т.п.

Как применяют FISH-диагностику плода?

В сфере репродуктивной медицины FISH-метод, как один из приемов молекулярной цитогенетической диагностики, используется на всех этапах.

  • В период планирования беременности парой.

Для определения кариотипа будущих родителей – проводится единожды, так как геном человека неизменен в течение всей жизни.

Кариотипирование пары перед зачатием ребенка поможет выявить являются ли родители носителями генетических патологий, передающихся по наследству, в том числе скрытых. А также общее состояние генома будущих мамы и папы, которое может повлиять на успешность зачатия малыша и вынашивания беременности.

Диагностика FISH-методом в данном случае зачастую выступает как дополнительное обследование к классическому кариотипированию, при выявлении хромосомных патологий в исследуемом материале (венозной крови родителей), если есть подозрение на мозаицизм.

Дообследование FISH-методом позволит достоверно подтвердить или опровергнуть наличие подозреваемой аномалии в клетках будущего родителя.

Показано при трудностях с репродукцией в паре по «мужскому фактору». Анализ спермы FISH-методом позволит оценить уровень аномальных по хромосомному набору сперматозоидов, а также определить является ли мужчина носителем генетических заболеваний, сцепленных с полом.

Если пара в дальнейшем прибегнет к зачатию с помощью ЭКО, FISH-анализ эякулята позволит отобрать наиболее качественные сперматозоиды для оплодотворения яйцеклетки.

Для предимплантационной генетической диагностики (ПГД). По результатам исследований кариотипа родителей определяются возможные хромосомные, генетические абберации, которые могут быть переданы эмбриону.

Благодаря возможностям FISH-диагностики, исследование генетического здоровья образовавшихся эмбрионов можно осуществить в считанные часы до переноса в полость матки, чтобы обеспечить наступление беременности заведомо здоровым плодом.

Кроме того, возможности ПГД позволяют определить половую принадлежность эмбрионов, а, следовательно, «заказать» пол будущего ребенка, если это необходимо.

  • В период вынашивания беременности.

В пренатальной диагностике: анализ плодовых клеток, полученных с помощью биопсии ворсин хориона, амниоцентеза или кордоцентеза, методом FISH медицинские центры обычно предлагают в дополнение к классическому генетическому исследованию клеток плода (кариотипированию).

Этот метод незаменим, когда необходимо быстрое получение ответа о наличии у плода наиболее распространенных хромосомных пороков: трисомии по 21, 18, 13 хромосомах, аббераций в хромосомах X и Y, иногда также анеуплоидий по 14 (или 17),15, 16 хромосомам.

Достоинства анализа FISH-методом

Проведение генетического анализа FISH-методом, хоть и остается на сегодняшний день вспомогательным методом диагностики хромосомных патологий, однако целесообразность его проведения обуславливают неоспоримые преимущества:

  • скорость получения результатов, касающиеся тестируемых хромосом – в течение нескольких часов – не более 72-х.

Это может быть важно, если от диагноза генетиков зависит судьба беременности;

  • высокая чувствительность и достоверность метода FISH–успешное проведение анализа возможно на ничтожно малом количестве биоматериала – достаточно одной клетки, погрешность результатов при этом, не более 0,5%.

Это может быть важно при ограниченном количестве клеток в исходном образце, например, при плохом их делении.

  • возможность проведения диагностики FISH-методом на любом сроке беременности (с 7-ой недели) и по любому биологическому образцу: фрагменты хориона, амниотическая жидкость, плодная кровь и т.п.

Где можно сделать диагностику FISH-методом

В Москве FISH-метод для пренатальной диагностики хромосомных отклонений плода применяют в следующих медицинских центрах:

Наименование медицинского учрежденияСтоимость процедуры, руб
Клиника «Мать и Дитя» Савеловская (ранее «Клиника Здоровья»)10 000 (амниоцентез с FISH-анализом)
Лаборатория «Геномед»8 000 (за одну пару хромосом)
ФГБНУ “Медико-Генетический Научный Центр”11 000 (за две пары хромосом)

Как правило, клиники предлагают услугу FISH-диагностики в рамках полного кариотипирования плода путем инвазивного вмешательства за дополнительную плату. И, как правило, будущие родители согласны доплатить, ведь благодаря FISH-методу уже через пару суток можно узнать о своем малыше самое главное

Источник: https://in-waiting.ru/fish-diagnostika-hromosomnoj-patologii-ploda.html

FISH-диагностика хромосомной патологии плода

FISH-диагностика плода и ее применение в планировании беременности и для выявления хромосомной патологии

Диагноз «замершая беременность» или врожденный порок развития у плода звучит, как гром среди ясного неба. Все в один миг перечеркивается черной полосой. Почему так случилось? Кто виновен? 

Причины, вызывающие замершую беременность.

Замершая беременность является частой акушерской проблемой. Считается, что каждая шестая беременность замирает в сроки до 13 недель. Причин возникновения этого может быть много, поэтому каждый такой случай требует индивидуального внимательного подхода и изучения для выяснения причин.

Например, остановке развития плода могут способствовать инфекционные заболевания, эндокринные причины, нарушения в системе свертываемости крови (в том числе и вызванные мутациями генов).

Одной из самых распространенных причин гибели плода являются хромосомные нарушения (в 60% случаев) – при их наличии срабатывает закон естественного отбора, и сама природа не допускает появления на свет больного ребенка.

Хромосомные отклонения могут впервые возникнуть при слиянии сперматозоида и яйцеклетки, а могут и передаваться от отца или матери, которые страдали ими в «скрытой» форме. Считается, что наиболее вероятной причиной замирания второй, третьей и последующих беременностей подряд является генетика. 

Причины, вызывающие врожденные пороки развития (ВПР)  у плода

К сожалению, рождение ребенка с ВПР стало в наши дни обычным явлением, безусловно, многие из ВПР успешно лечатся, но значительная часть ВПР по-прежнему приводит к инвалидности или к гибели ребенка. Частота ВПР доходит до 5%, т.е. у каждого двадцатого ребенка находится какие-то отклонения.

Часть патологии, как правило наиболее грубой, обнаруживают внутриутробно, и обычно родители принимают решение прервать такую патологическую беременность.

Но дальше встает вопрос: «В чем была причина возникновения ВПР?» А таких причин может быть три: воздействие терратогенных факторов в ранние сроки беременности, наличие тяжелого генного заболевания и хромосомные отклонения у плода.

Считается, что среди множественных врожденных пороков развития (МВПР) хромосомная патология может быть причиной до 60%, а при изолированных пороках до 6% патологии. Поэтому многие родители хотят знать, была ли у прерванного плода хромосомная патология или причина ВПР была в воздействии вредных факторов.

Знание причины возникновения очень важно для прогноза следующих беременностей, ведь большинство родителей планируют еще беременности и рождение здорового малыша.

В настоящее время только проведение цитогенетические исследования тканей плода (хориона, плаценты, крови из пуповины) открывает единственную возможность выяснить – являлась ли аномалия хромосом у плода причиной замершей беременности.

Виды исследований хромосом

Классическое цитогенетическое исследование – проводится в том случае, когда клетки плода хорошо делятся, оцениваются все 23 пары хромосом, наиболее информативно. Как правило оно проводится до 15 недель беременности и при недавнем замирании беременности или прерывании беременности в связи с выявленным ВПР.

FISH-диагностика – проводится, если в доставленном материале не удается получить делящиеся клетки в нужном количестве (бывает в одном случае из десяти), прошло достаточно большое время после замирания беременности или срок беременности не позволяет исследовать клетки ворсин хориона.

Исследуются наиболее частые хромосомные отклонения у плода – трисомии по 13, 18, 21 паре и половым хромосомам (синдромы Патау, Эдвардса, Дауна, Шерешевского-Тернера, Клайнфельтера)

Что делать если это случилось с Вами? При поступлении в роддом необходимо проинформировать своего врача акушера-гинеколога о намерении сделать исследование хромосом абортного материала.

Предупредить доктора о желании провести анализ необходимо, поскольку требуется специальный забор плодного материала (хориальная ткань должна быть помещена в емкость с физиологическим раствором, кровь из пуповины плода в стерильную пробирку или шприц с гепарином).

Желательно также проинформировать лабораторию КМГК (тел.: (423)242-06-90) о планируемой доставке материала. 

Следующим этапом является доставка емкости с материалом в цитогенетическую лабораторию. Сделать это необходимо как можно быстрее, т.к. вне организма клетки хориона начинают терять свою способность к делению и становятся непригодными для исследования. Если забор материала (выскабливание) проводилось ночью, то его до утра следует поставить в холодильник, соблюдая температуру +2+8°С (не в морозильную камеру). 

Беременность после «замершей беременности» или ВПР плода.

Индивидуальный план обследования назначается врачом акушером-гинекологом. В обязательном порядке необходима консультация врача-генетика, который проинтерпретирует результаты исследования хромосом плода, при необходимости назначит необходимое обследование, выяснит наследственную предрасположенность данной проблемы, а также оценит риск неблагоприятного течения и исхода последующей беременности.

Счастливой Вам беременности и легких родов!

Адрес лаборатории г. Владивосток, ул. Уборевича 30/37, ГБУЗ «ККЦСВМП», КМГК, кабинет 926. 

Так же Вы можете записаться на консультацию к врачу-генетику. Тел. регистратуры: (423)242-84-57, 242-98-83.

Источник: http://kkcsvmp.ru/fish-diagnostika-xromosomnoj-patologii-ploda.html

Исследование гоносом FISH-методом у преимплантационных эмбрионов

FISH-диагностика плода и ее применение в планировании беременности и для выявления хромосомной патологии

Данная статья описывает исследование преимплантационных эмбрионов с помощью FISH-метода (fluorescent in situ hybridization) у супружеских пар, проходящих лечение бесплодия методом экстракорпорального оплодотворения (ЭКО).

Суть исследования

Проводили определение пола у 360 эмбрионов, полученных у 42 супружеских пар в 60 циклах стимуляции суперовуляции в программе ЭКО.

После биопсии и фиксации бластомеров пригодным к проведению диагностики оказалось 281 ядро, из них 217 (77,2%) не несли хромосомной патологии. 104 ядра содержали женский набор хромосом, 113 –мужской.

В 64 ядрах (22,8%) были выявлены различные виды анеуплоидии гоносом. Дальнейшее развитие эмбрионов после проведения биопсии бластомера наблюдалось в 79%.

В 10 циклах стимуляции из 60 перенос не производился в связи с отсутствием эмбрионов нужного пола. Беременность наступила в 17 циклах (28% на цикл стимуляции и 34% на перенос эмбрионов). Из 13 клинически подтвержденных беременностей 4 прервались в 1-ом триместре, 1 –во 2-ом. 8 беременностей закончились рождением 10 (2 двойни) здоровых детей желаемого пола.

Из 64 ядер, содержащих хромосомную патологию, 19 (29,7%) имели моносомию X-хромосомы, 8 (12,5%) – моносомию Y-хромосомы. Трисомия была отмечена в 28 случаях (43,8%), полисомия в 8 (12,5%). Таким образом, полученные данные показали, что моносомия и трисомия являются наиболее частой хромосомной патологией гоносом.

Преимплантационная генетическая диагностика (ПД) возникла более 40 лет назад. Впервые R.Edwards и R.Gardner применили ее в 1967 г. для определения пола эмбрионов кролика. Уже тогда возникла идея использования данной технологии у человека для предотвращения передачи наследственных заболеваний от родителей детям.

Однако такая возможность появилась только спустя 20 лет, когда в начале 90-х годов была разработана техника полимеразной цепной реакции (ПЦР), позволяющей выявлять мутации в единичных клетках [2]. Впервые ПЦР для проведения ПД в клинической практике применили A.Handyside и соавторы в 1990 г.

, выявив специфические последовательности для Y-хромосомы при определении пола эмбрионов у супружеских пар с X-сцепленными заболеваниями. С развитием науки от проведения ПЦР постепенно стали отказываться в пользу другого метода — флюоресцентной (нерадиоактивной) гибридизации in situ (FISH).

Преимущество данного метода состояло в возможности одновременного определения как X-, так и Y-хромосомы. Кроме того, стало возможным определять не только пол эмбрионов, но и выявлять анеуплоидии половых хромосом (гоносом).

На современном этапе развития медицины для определения пола преимплантационных эмбрионов используют молекулярно-цитогенетический метод FISH.

Данный метод имеет ряд преимуществ перед другими способами молекулярной гибридизации: для генетического исследования методом FISH не требуется получения большого количества биологического материала, выделения ДНК из клеток, а также использования радиоизотопа P32. С помощью этого метода можно анализировать хромосомы на всех стадиях клеточного цикла, в том числе в интерфазе.

Его принцип основан на специфической гибридизации определенных участков хромосом с флюоресцентно-меченными зондами. Метод позволяет определить структурные перестройки хромосом и выявить число их копий в интерфазных ядрах по флюоресценции зондов.

ПД молекулярно-цитогенетическим FISH-методом с определением пола, выявлением анеуплоидии и различных транслокаций в эмбрионах занимает большую часть от общего числа проводимой диагностики в рамках программ ВРТ. В большинстве клиник основными показаниями для определения пола эмбрионов являются: наличие рецессивного Х-сцепленного заболевания, наличие делеций в Y хромосоме, а также желание родителей.

Исследуя пол у эмбрионов, все авторы отметили у них высокий уровень анеуплоидии гоносом и мозаицизм. По данным разных авторов, клеточный мозаицизм у преимплантационных эмбрионов может наблюдаться до 50% случаев.

Эти исследования подтвердили, что высокая доля хромосомных нарушений, выявленная у эмбрионов, не связана с недостатками методики FISH, а соответствует истинному кариотипу исследуемых клеток.

Полученные результаты указывают на то, что при проведении преимплантационной генетической диагностики супружеским парам с целью определения пола эмбрионов необходимо одновременно исследовать их на наиболее распространенные трисомии.

Цель исследования

Определение пола эмбрионов и выявление патологии в комплексе гоносом.

Материалы и методы

В отделении вспомогательных технологий в лечении бесплодия НЦ АГиП им.академика В.И.Кулакова были проанализированы результаты проведения преимплантационной генетической диагностики (ПГД) с определением пола эмбрионов 42 супружеских пар по желанию пациентов.

На момент исследования 2 пары были фертильны, остальные проходили лечение по программе ЭКО и ПЭ в связи с первичным или вторичным бесплодием. Средний возраст пациенток составил 32 года (от 23 до 43 лет). Исследование эмбрионов проводили с помощью FISH-метода.

Определение пола эмбриона проводили на ядрах бластомеров. Биопсия бластомера осуществлялась с помощью микроманипулятора.

Для получения биологического материала прежде всего проводили пенетрацию наружной оболочки эмбриона (zona pellucida) до размера, достаточного для аспирации бластомера аспирационной микроиглой (20-40 мкм). Вскрытие zona pellucida осуществляли с помощью лазерного луча.

Бластомер, содержащий четко видимое ядро, аспирировали в просвет микроиглы, соединенной с микрошприцем (50-100 мкл). Биопсированный бластомер помещали на предметное стекло, фиксировали и выполняли процесс гибридизации ДНК хромосом, содержащихся в ядре, и ДНК-зонда.

Использовали зонды к X- и Y- хромосомам (фирма ABBOTT). Готовый препарат анализировали с помощью люминесцентного микроскопа (фирма Zeiss), при использовании которого каждая хромосома имеет свой, отличный от других, цвет свечения.

Результаты

Всего в 60 циклах стимуляции суперовуляции у 42 женщин было получено 520 ооцитов, после оплодотворения которых развился 371 эмбрион (71,3%). Биопсия бластомеров была проведена у 360 эмбрионов (11 эмбрионов были разрушены в ходе биопсии).

При исследовании 281 ядра, принадлежащего одноядерным бластомерам, нормальный набор по изучаемым хромосомам был определен в 217 из 281, что составило 77,2%, а в 64 отмечали различные типы анеуплоидии (22,8%). Женский набор хромосом был определен в 104 наблюдениях, мужской – в 113.

Среди выявленной патологии по изучаемым хромосомам наибольшая доля принадлежала моносомии X-хромосомы –29,7% (в 19 наблюдениях из 64). Моносомия Y-хромосомы была отмечена в 8 случаях (12,5%).

Таким образом, общий уровень моносомии составил 42,2% (в 27 случаях из 64). Трисомия гоносом среди случаев выявленной анеуплоидии была отмечена в 28 наблюдениях, что составило 43,8%.

Полисомия гоносом составила 12,5% (в 8 наблюдениях из 64).

После проведения процедуры забора бластомера дальнейшее развитие среди пригодных для биопсии эмбрионов наблюдали в 79% случаев. Из 60 случаев проведенной диагностики отмена переноса в связи с отсутствием нужного пола была в 10 случаях.

Всего беременность наступила в 17 проведенных циклах, что составило 28% на цикл стимуляции и 34% на перенос эмбрионов. Из 13 клинических беременностей 4 остановились в развитии в 1-ом триместре беременности, 1 прервалась во 2-ом.

8 беременностей завершились родами, родилось 10 здоровых детей нужного пола (в 2-х случаях –двойни).

Выводы

Полученные нами данные показали, что проведение ПГД FISH-методом может успешно использоваться с целью определения пола эмбрионов и дальнейшего переноса в полость матки эмбриона желаемого пола.

Кроме того, определение пола FISH-методом позволяет выявить патологию гоносом, что предотвращает перенос эмбриона с хромосомной патологией в полость матки пациентки, раннюю гибель эмбриона или рождение больного ребенка.

Однако, учитывая наличие мозаицизма в эмбрионе, даже после проведения ПГД рекомендована пренатальная диагностика для исключения рождения ребенка с хромосомными нарушениями.

Хотите записаться на прием?

Цены на медицинские услуги

Консультация врача-генетика

Акции в Нова Клиник

Вернуться к списку

Источник: https://nova-clinic.ru/statyi/issledovanie-embrionov-fish/

Исследование хромосом методом FISH. Лечение бесплодия от ИРМ

FISH-диагностика плода и ее применение в планировании беременности и для выявления хромосомной патологии

ИРМ > Исследование хромосом методом FISH

Эта методика широко используется в мировых клиниках ВРТ и генетических центрах. Суть преимплантационной диагностики методом FISH заключается в следующем: одна-две клетки извлекаются (проводится биопсия) из эмбриона соответствующего качества.

В большинстве клиник ЭКО процедуру биопсии бластомера проводят на 3 сутки развития и генетическое исследование эмбриона занимает 24–48 часов. Далее с помощью специального оборудования проводят генетический анализ клеточных ядер и дают заключение о том, является ли эмбрион нормальным по исследованным хромосомам.

После этого «здоровые» эмбрионы переносят в полость матки. Остальные исследованные эмбрионы хорошего качества криоконсервируют на случай, если потребуется повторная попытка лечения.В настоящее время специалисты ИРМ на современном оборудовании проводят генетическую диагностику в максимально короткие сроки 4–6 ч.

Мы осуществляем забор (биопсию) клеток трофэктодермы на 5 сутки развития эмбриона и проводим перенос свежих эмбрионов в тот же день — это новый подход, дающий ряд неоспоримых преимуществ над методом биопсии бластомера на 3 сутки развития.

Это получение большего количество материала для проведения анализа, постановка более точного диагноза, снижение риска задержки эмбрионов в развитии и низкий уровень мозаицизма по сравнению с результатами биопсии бластомера на эмбрионах 3-х суток развития.

Современная методика генетического анализа и биопсия трофэктодермы также дает нам уникальную возможность проводить ПГД на ранее замороженных эмбрионах!

Могут ли эмбрионы остановиться в развитии в результате биопсии?

Риск остановки в развитии после биопсии бластомера у эмбриона 3-х суток развития очень велик, поскольку для анализа необходимо забрать 1–2 из 8 бластомеров, составляет 10–20% эмбриона.

К пятым же суткам развития бластоциста имеет около 150 клеток, поэтому биопсия 3–5 клеток трофэктодермы составляет 2–4% от всех клеток эмбриона, и не оказывает губительного влияния на его дальнейшее развитие.

Поэтому пациентам, планирующим ПГД, следует обратить особое внимание и поинтересоваться у лечащего врача на какой день развития проводится биопсия эмбрионов.

Кому рекомендовано проведение ПГД методом FISH?

  • Две и более неудачные попытки ЭКО/ИКСИ
  • Пациентам с выкидышами на ранних сроках беременности и/или с биохимической беременностью т.к.

    около 50% таких случаев связаны с хромосомными аномалиями

  • Будущая мать старше 35 – с возрастом многократно возрастает риск рождения ребенка с синдромом Дауна
  • Пациентам с предыдущими неудачными попытками в программах ВРТ.

    Они могут быть связаны с генетической патологией перенесенных эмбрионов

  • У будущих родителей (или у одного из них) диагностировано генетическое заболевание
  • Если у родителей (или у одного из них) уже есть ребенок с патологиями
  • Хромосомные транслокации (перестройки) у одного из родителей
  • У отца будущего ребенка тяжелые нарушения сперматогенеза
  •  Определение полового статуса эмбриона для исключение хромосомных патологий сцепленных с полом

В центре ЭКО преимплантационная генетическая диагностика методом FISH проводится с 2008 года.  В 2019 году было проведено 227 программ ПГД-методом FISH. Эффективность за 2019 год составила 45%.

Какова точность ПГД?

Точность метода составляет более 95%. Все зависит от стадии развития эмбриона (3-и или 5-е сутки), на которой мы проводим диагностику. Существует такое понятие, как мозаицизм (от слова «мозаика»), когда часть клеток содержит хромосомную патологию, а часть остаются нормальными.

У заболевания в такой ситуации менее выражена клиническая картина, то есть будут проявляться не все, а лишь частичные признаки, причем не обязательно внешние.

Заменяет ли ПГД эмбриона пренатальную диагностику плода?
Из-за риска мозаицизма, который не всегда можно выявить с помощью ПГД, в случае выявления у плода дефектов с помощью УЗИ-диагностики или в результате биохимического скрининга, пренатальную диагностику нужно проводить обязательно.

Если беременность протекает нормально и при ультразвуковом сканировании не выявляется патология плода, то пренатальную диагностику можно не проводить. ПГД не в состоянии исследовать все заболевания – только определенный спектр хромосомных аномалий.

Можно ли просчитать пол будущего ребенка заранее?

Существуют генетические заболевания сцепленные с полом (например, гемофилия — болеют только мальчики или в роду есть болезни, передающиеся только по женской линии, и поэтому родители не хотят рожать девочку), т.е. заболевают только дети одного пола.

Возникает необходимость в выборе пола, чтобы родить здорового ребенка. Просчитать пол будущего ребенка невозможно, поэтому на помощь приходит ПГД, которая дает возможность с высокой точностью определить пол и выбрать «здоровый» эмбрион на перенос.

На сегодняшний день мы имеем возможность предложить своим пациентам следующие услуги по ПГД: 

  •  Скрининг по 3 хромосомам (18,X,Y) – позволяет исключить синдром Эдвардса, синдром Шерешевского-Тернера, синдром Клайнфельтера, а также моносомии по данным хромосомам
  • Скрининг по 5 хромосомам (13,18,21,X,Y) – позволяет исключить синдром Патау, Синдром Эдвардса, синдром Дауна, синдром Шерешевского-Тернера, синдром Клайнфельтера, а также моносомии по данным хромосомам
  • Скрининг по 7 хромосомам (13,15,17,18,21,X,Y) – позволяет исключить синдром Патау и синдром Дауна и др., а также моносомии по данным хромосомам
  • Скрининг по 9 хромосомам (13,15,16,17,18,21,22,X,Y) – позволяет исключить синдром Патау и синдром Дауна и др., а также моносомии по данным хромосомам
  • Проведение ПГД на размороженных бластоцистах криоконсевированных ранее
  • Диагностика структурных перестроек по любым хромосомам

Источник: https://irm.kz/issledovanie-hromosom-metodom-fish/

Советы врача
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: